Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 15 de 15
Фильтр
1.
Front Pharmacol ; 13: 1082652, 2022.
Статья в английский | MEDLINE | ID: covidwho-2287560
2.
Virol J ; 19(1): 197, 2022 11 25.
Статья в английский | MEDLINE | ID: covidwho-2139346

Реферат

Currently, the majority of the global population has been vaccinated with the COVID-19 vaccine, and characterization studies of antibodies in vivo from Omicron breakthrough infection and naive infection populations are urgently needed to provide pivotal clues about accurate diagnosis, treatment, and next-generation vaccine design against SARS-CoV-2 infection. We showed that after infection with Omicron-BA.2, the antibody levels of specific IgM against the Wuhan strain and specific IgG against Omicron were not significantly elevated within 27 days of onset. Interestingly, in this study, the levels of humoral immunity against Omicron-specific IgM were significantly increased after breakthrough infection, suggesting that the detection of Omicron-specific IgM antibodies can be used as a test criterion of Omicron breakthrough infection. In addition, we observed that serums from unvaccinated individuals and the majority of vaccinated infections possessed only low or no neutralizing activity against Omicron at the onset of Omicron breakthrough infections, and at the later stage of Omicron-BA.2 breakthrough infection, levels of neutralization antibody against the Wuhan and Omicron strains were elevated in infected individuals. The findings of this study provide important clues for the diagnosis of Omicron breakthrough infections, antibody characterization studies and vaccine design against COVID-19.


Тема - темы
Antibody Formation , COVID-19 , Humans , SARS-CoV-2 , Antibodies, Viral , COVID-19 Vaccines , Immunoglobulin M
3.
J Med Virol ; 94(12): 6065-6072, 2022 Dec.
Статья в английский | MEDLINE | ID: covidwho-1976738

Реферат

Various variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been emerging and circulating in different parts of the world. Millions of vaccine doses have been administered globally, which reduces the morbidity and mortality of coronavirus disease-2019 efficiently. Here, we assess the immune responses of individuals after two shots of BBIBP-CorV or CoronaVac inactivated vaccine. We measured neutralizing antibody responses after the second vaccination by using authentic SARS-CoV-2 and its viral variants. All the serum samples efficiently neutralized SARS-CoV-2 wild-type lineage, in contrast, a part of serum samples failed to neutralize Alpha, Beta, Gamma, Delta, or Eta lineages, and only several serum samples were able to neutralize Omicron lineage virus strains (BA.1 and BA.2) with low neutralization titer. As compared with the neutralization of SARS-CoV-2 wild-type lineage, the neutralization of all other SARS-CoV-2 variant lineages was significantly lower. Considering that all the SARS-CoV-2 mutation viruses challenged the antibody neutralization induced by BBIBP-CorV and CoronaVac, it is necessary to carry out a third booster vaccination to increase the humoral immune response against the SARS-CoV-2 mutation viruses.


Тема - темы
COVID-19 , Viral Vaccines , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , SARS-CoV-2/genetics , Vaccines, Inactivated
4.
J Med Virol ; 94(9): 4533-4538, 2022 09.
Статья в английский | MEDLINE | ID: covidwho-1885414

Реферат

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants could induce immune escape by mutations of the spike protein which are threatening to weaken vaccine efficacy. A booster vaccination is expected to increase the humoral immune response against SARS-CoV-2 variants in the population. We showed that immunization with two doses of wild type receptor-binding domain (RBD) protein, and booster vaccination with wild type or variant RBD protein all significantly increased binding and neutralizing antibody titers against wild type SARS-CoV-2 and its variants in mice. Only the booster immunization by Omicron (BA.1)RBD induced a strong antibody titer against the omicron virus strain and comparable antibody titers against all the other virus strains. These findings might shed the light on coronavirus disease 2019 booster immunogens.


Тема - темы
COVID-19 Vaccines , COVID-19 , Immunity, Humoral , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Humans , Immunization, Secondary , Mice , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Vaccination
5.
JAMA ; 323(16): 1582-1589, 2020 04 28.
Статья в английский | MEDLINE | ID: covidwho-1453469

Реферат

Importance: Coronavirus disease 2019 (COVID-19) is a pandemic with no specific therapeutic agents and substantial mortality. It is critical to find new treatments. Objective: To determine whether convalescent plasma transfusion may be beneficial in the treatment of critically ill patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Design, Setting, and Participants: Case series of 5 critically ill patients with laboratory-confirmed COVID-19 and acute respiratory distress syndrome (ARDS) who met the following criteria: severe pneumonia with rapid progression and continuously high viral load despite antiviral treatment; Pao2/Fio2 <300; and mechanical ventilation. All 5 were treated with convalescent plasma transfusion. The study was conducted at the infectious disease department, Shenzhen Third People's Hospital in Shenzhen, China, from January 20, 2020, to March 25, 2020; final date of follow-up was March 25, 2020. Clinical outcomes were compared before and after convalescent plasma transfusion. Exposures: Patients received transfusion with convalescent plasma with a SARS-CoV-2-specific antibody (IgG) binding titer greater than 1:1000 (end point dilution titer, by enzyme-linked immunosorbent assay [ELISA]) and a neutralization titer greater than 40 (end point dilution titer) that had been obtained from 5 patients who recovered from COVID-19. Convalescent plasma was administered between 10 and 22 days after admission. Main Outcomes and Measures: Changes of body temperature, Sequential Organ Failure Assessment (SOFA) score (range 0-24, with higher scores indicating more severe illness), Pao2/Fio2, viral load, serum antibody titer, routine blood biochemical index, ARDS, and ventilatory and extracorporeal membrane oxygenation (ECMO) supports before and after convalescent plasma transfusion. Results: All 5 patients (age range, 36-65 years; 2 women) were receiving mechanical ventilation at the time of treatment and all had received antiviral agents and methylprednisolone. Following plasma transfusion, body temperature normalized within 3 days in 4 of 5 patients, the SOFA score decreased, and Pao2/Fio2 increased within 12 days (range, 172-276 before and 284-366 after). Viral loads also decreased and became negative within 12 days after the transfusion, and SARS-CoV-2-specific ELISA and neutralizing antibody titers increased following the transfusion (range, 40-60 before and 80-320 on day 7). ARDS resolved in 4 patients at 12 days after transfusion, and 3 patients were weaned from mechanical ventilation within 2 weeks of treatment. Of the 5 patients, 3 have been discharged from the hospital (length of stay: 53, 51, and 55 days), and 2 are in stable condition at 37 days after transfusion. Conclusions and Relevance: In this preliminary uncontrolled case series of 5 critically ill patients with COVID-19 and ARDS, administration of convalescent plasma containing neutralizing antibody was followed by improvement in their clinical status. The limited sample size and study design preclude a definitive statement about the potential effectiveness of this treatment, and these observations require evaluation in clinical trials.


Тема - темы
Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , Betacoronavirus/immunology , Coronavirus Infections/therapy , Pneumonia, Viral/therapy , Respiratory Distress Syndrome/therapy , Adult , Aged , Antibodies, Viral/blood , Antiviral Agents/therapeutic use , Blood Donors , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/physiopathology , Critical Illness , Female , Glucocorticoids/therapeutic use , Humans , Immunization, Passive , Immunoglobulin G/blood , Immunoglobulin M/blood , Male , Methylprednisolone/therapeutic use , Middle Aged , Organ Dysfunction Scores , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/physiopathology , SARS-CoV-2 , COVID-19 Serotherapy
6.
Respir Res ; 22(1): 203, 2021 Jul 09.
Статья в английский | MEDLINE | ID: covidwho-1300252

Реферат

BACKGROUND: Thousands of Coronavirus Disease 2019 (COVID-19) patients have been discharged from hospitals Persistent follow-up studies are required to evaluate the prevalence of post-COVID-19 fibrosis. METHODS: This study involves 462 laboratory-confirmed patients with COVID-19 who were admitted to Shenzhen Third People's Hospital from January 11, 2020 to April 26, 2020. A total of 457 patients underwent thin-section chest CT scans during the hospitalization or after discharge to identify the pulmonary lesion. A total of 287 patients were followed up from 90 to 150 days after the onset of the disease, and lung function tests were conducted about three months after the onset. The risk factors affecting the persistence of pulmonary fibrosis were identified through regression analysis and the prediction model of the persistence of pulmonary fibrosis was established. RESULTS: Parenchymal bands, irregular interfaces, reticulation and traction bronchiectasis were the most common CT features in all COVID-19 patients. During the 0-30, 31-60, 61-90, 91-120 and > 120 days after onset, 86.87%, 74.40%, 79.56%, 68.12% and 62.03% patients developed with pulmonary fibrosis and 4.53%, 19.61%, 18.02%, 38.30% and 48.98% patients reversed pulmonary fibrosis, respectively. It was observed that Age, BMI, Fever, and Highest PCT were predictive factors for sustaining fibrosis even after 90 days from onset. A predictive model of the persistence with pulmonary fibrosis was developed based-on the Logistic Regression method with an accuracy, PPV, NPV, Sensitivity and Specificity of the model of 76%, 71%, 79%, 67%, and 82%, respectively. More than half of the COVID-19 patients revealed abnormal conditions in lung function after 90 days from onset, and the ratio of abnormal lung function did not differ on a statistically significant level between the fibrotic and non-fibrotic groups. CONCLUSIONS: Persistent pulmonary fibrosis was more likely to develop in patients with older age, higher BMI, severe/critical condition, fever, a longer viral clearance time, pre-existing disease and delayed hospitalization. Fibrosis developed in COVID-19 patients could be reversed in about a third of the patients after 120 days from onset. The pulmonary function of less than half of COVID-19 patients could turn to normal condition after three months from onset. An effective prediction model with an average area under the curve (AUC) of 0.84 was established to predict the persistence of pulmonary fibrosis in COVID-19 patients for early diagnosis.


Тема - темы
COVID-19/virology , Lung/virology , Patient Discharge , Pulmonary Fibrosis/virology , SARS-CoV-2/pathogenicity , Adolescent , Adult , COVID-19/complications , COVID-19/diagnosis , China , Female , Host-Pathogen Interactions , Humans , Lung/diagnostic imaging , Lung/physiopathology , Male , Middle Aged , Prognosis , Pulmonary Fibrosis/diagnostic imaging , Pulmonary Fibrosis/physiopathology , Respiratory Function Tests , Time Factors , Tomography, X-Ray Computed , Young Adult
7.
Innovation (Camb) ; 1(3): 100061, 2020 11 25.
Статья в английский | MEDLINE | ID: covidwho-1164618

Реферат

The worldwide epidemic of coronavirus disease 2019 (COVID-19) is ongoing. Rapid and accurate detection of the causative virus SARS-CoV-2 is vital for the treatment and control of COVID-19. In this study, the comparative sensitivity of different respiratory specimen types were retrospectively analyzed using 3,552 clinical samples from 410 COVID-19 patients confirmed by Guangdong CDC (Center for Disease Control and Prevention). Except for bronchoalveolar lavage fluid (BALF), the sputum possessed the highest positive rate (73.4%-87.5%), followed by nasal swabs (53.1%-85.3%) for both severe and mild cases during the first 14 days after illness onset (d.a.o.). Viral RNA could be detected in all BALF samples collected from the severe group within 14 d.a.o. and lasted up to 46 d.a.o. Moreover, although viral RNA was negative in the upper respiratory samples, it was also positive in BALF samples in most cases from the severe group during treatment. Notably, no viral RNA was detected in BALF samples from the mild group. Despite typical ground-glass opacity observed via computed tomographic scans, no viral RNA was detected in the first three or all upper respiratory tract specimens from some COVID-19 patients. In conclusion, sputum is most sensitive for routine laboratory diagnosis of COVID-19, followed by nasal swabs. Detection of viral RNA in BALF improves diagnostic accuracy in severe COVID-19 patients.

8.
Front Pharmacol ; 11: 609592, 2020.
Статья в английский | MEDLINE | ID: covidwho-1094200

Реферат

To identify drugs that are potentially used for the treatment of COVID-19, the potency of 1403 FDA-approved drugs were evaluated using a robust pseudovirus assay and the candidates were further confirmed by authentic SARS-CoV-2 assay. Four compounds, Clomiphene (citrate), Vortioxetine, Vortioxetine (hydrobromide) and Asenapine (hydrochloride), showed potent inhibitory effects in both pseudovirus and authentic virus assay. The combination of Clomiphene (citrate), Vortioxetine and Asenapine (hydrochloride) is much more potent than used alone, with IC50 of 0.34 µM.

9.
Small Methods ; 5(2): 2001031, 2021 Feb 15.
Статья в английский | MEDLINE | ID: covidwho-986422

Реферат

The ongoing corona virus disease 2019 (COVID-19) pandemic, caused by SARS-CoV-2 infection, has resulted in hundreds of thousands of deaths. Cellular entry of SARS-CoV-2, which is mediated by the viral spike protein and ACE2 receptor, is an essential target for the development of vaccines, therapeutic antibodies, and drugs. Using a mammalian cell expression system, a genetically engineered sensor of fluorescent protein (Gamillus)-fused SARS-CoV-2 spike trimer (STG) to probe the viral entry process is developed. In ACE2-expressing cells, it is found that the STG probe has excellent performance in the live-cell visualization of receptor binding, cellular uptake, and intracellular trafficking of SARS-CoV-2 under virus-free conditions. The new system allows quantitative analyses of the inhibition potentials and detailed influence of COVID-19-convalescent human plasmas, neutralizing antibodies and compounds, providing a versatile tool for high-throughput screening and phenotypic characterization of SARS-CoV-2 entry inhibitors. This approach may also be adapted to develop a viral entry visualization system for other viruses.

11.
Structure ; 28(11): 1218-1224.e4, 2020 11 03.
Статья в английский | MEDLINE | ID: covidwho-872505

Реферат

The ongoing global pandemic of coronavirus disease 2019 (COVID-19) resulted from the outbreak of SARS-CoV-2 in December 2019. Currently, multiple efforts are being made to rapidly develop vaccines and treatments to fight COVID-19. Current vaccine candidates use inactivated SARS-CoV-2 viruses; therefore, it is important to understand the architecture of inactivated SARS-CoV-2. We have genetically and structurally characterized ß-propiolactone-inactivated viruses from a propagated and purified clinical strain of SARS-CoV-2. We observed that the virus particles are roughly spherical or moderately pleiomorphic. Although a small fraction of prefusion spikes are found, most spikes appear nail shaped, thus resembling a postfusion state, where the S1 protein of the spike has disassociated from S2. Cryoelectron tomography and subtomogram averaging of these spikes yielded a density map that closely matches the overall structure of the SARS-CoV postfusion spike and its corresponding glycosylation site. Our findings have major implications for SARS-CoV-2 vaccine design, especially those using inactivated viruses.


Тема - темы
Betacoronavirus/ultrastructure , Disinfectants/pharmacology , Propiolactone/pharmacology , Virion/drug effects , Animals , Betacoronavirus/drug effects , Betacoronavirus/immunology , COVID-19 Vaccines , Chlorocebus aethiops , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Cryoelectron Microscopy , Electron Microscope Tomography , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/ultrastructure , Vaccines, Inactivated/immunology , Vero Cells , Viral Vaccines/immunology , Virion/ultrastructure
12.
Natl Sci Rev ; 7(6): 1003-1011, 2020 Jun.
Статья в английский | MEDLINE | ID: covidwho-820587

Реферат

A recent outbreak of pneumonia in Wuhan, China was found to be caused by a 2019 novel coronavirus (2019-nCoV or SARS-CoV-2 or HCoV-19). We previously reported the clinical features of 12 patients with 2019-nCoV infections in Shenzhen, China. To further understand the pathogenesis of COVID-19 and find better ways to monitor and treat the disease caused by 2019-nCoV, we measured the levels of 48 cytokines in the blood plasma of those 12 COVID-19 patients. Thirty-eight out of the 48 measured cytokines in the plasma of 2019-nCoV-infected patients were significantly elevated compared to healthy individuals. Seventeen cytokines were linked to 2019-nCoV loads. Fifteen cytokines, namely M-CSF, IL-10, IFN-α2, IL-17, IL-4, IP-10, IL-7, IL-1ra, G-CSF, IL-12, IFN-γ, IL-1α, IL-2, HGF and PDGF-BB, were strongly associated with the lung-injury Murray score and could be used to predict the disease severity of 2019-nCoV infections by calculating the area under the curve of the receiver-operating characteristics. Our results suggest that 2019-nCoV infections trigger extensive changes in a wide array of cytokines, some of which could be potential biomarkers of disease severity of 2019-nCoV infections. These findings will likely improve our understanding of the immunopathologic mechanisms of this emerging disease. Our results also suggest that modulators of cytokine responses may play a therapeutic role in combating the disease once the functions of these elevated cytokines have been characterized.

13.
Science ; 368(6496): 1274-1278, 2020 06 12.
Статья в английский | MEDLINE | ID: covidwho-260594

Реферат

Neutralizing antibodies could potentially be used as antivirals against the coronavirus disease 2019 (COVID-19) pandemic. Here, we report isolation of four human-origin monoclonal antibodies from a convalescent patient, all of which display neutralization abilities. The antibodies B38 and H4 block binding between the spike glycoprotein receptor binding domain (RBD) of the virus and the cellular receptor angiotensin-converting enzyme 2 (ACE2). A competition assay indicated different epitopes on the RBD for these two antibodies, making them a potentially promising virus-targeting monoclonal antibody pair for avoiding immune escape in future clinical applications. Moreover, a therapeutic study in a mouse model validated that these antibodies can reduce virus titers in infected lungs. The RBD-B38 complex structure revealed that most residues on the epitope overlap with the RBD-ACE2 binding interface, explaining the blocking effect and neutralizing capacity. Our results highlight the promise of antibody-based therapeutics and provide a structural basis for rational vaccine design.


Тема - темы
Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , Coronavirus Infections/therapy , Peptidyl-Dipeptidase A/immunology , Pneumonia, Viral/therapy , Receptors, Virus/immunology , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/isolation & purification , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/isolation & purification , Antibodies, Viral/immunology , Antibodies, Viral/isolation & purification , COVID-19 , Disease Models, Animal , Humans , Immunodominant Epitopes/chemistry , Immunodominant Epitopes/immunology , Lung/immunology , Lung/virology , Mice , Neutralization Tests , Pandemics , Protein Domains , Viral Load/immunology
14.
J Allergy Clin Immunol ; 146(1): 119-127.e4, 2020 Jul.
Статья в английский | MEDLINE | ID: covidwho-170708

Реферат

BACKGROUND: The outbreak of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 was first reported in Wuhan, December 2019, and continuously poses a serious threat to public health, highlighting the urgent need of identifying biomarkers for disease severity and progression. OBJECTIVE: We sought to identify biomarkers for disease severity and progression of COVID-19. METHODS: Forty-eight cytokines in the plasma samples from 50 COVID-19 cases including 11 critically ill, 25 severe, and 14 moderate patients were measured and analyzed in combination with clinical data. RESULTS: Levels of 14 cytokines were found to be significantly elevated in COVID-19 cases and showed different expression profiles in patients with different disease severity. Moreover, expression levels of IFN-γ-induced protein 10, monocyte chemotactic protein-3, hepatocyte growth factor, monokine-induced gamma IFN, and macrophage inflammatory protein 1 alpha, which were shown to be highly associated with disease severity during disease progression, were remarkably higher in critically ill patients, followed by severe and then the moderate patients. Serial detection of the 5 cytokines in 16 cases showed that continuously high levels were associated with deteriorated progression of disease and fatal outcome. Furthermore, IFN-γ-induced protein 10 and monocyte chemotactic protein-3 were excellent predictors for the progression of COVID-19, and the combination of the 2 cytokines showed the biggest area under the curve of the receiver-operating characteristics calculations with a value of 0.99. CONCLUSIONS: In this study, we report biomarkers that are highly associated with disease severity and progression of COVID-19. These findings add to our understanding of the immunopathologic mechanisms of severe acute respiratory syndrome coronavirus 2 infection, and provide potential therapeutic targets and strategies.


Тема - темы
Biomarkers/blood , Chemokine CCL7/blood , Chemokine CXCL10/blood , Coronavirus Infections/blood , Pneumonia, Viral/blood , Adult , Aged , Betacoronavirus , COVID-19 , Critical Illness , Cytokines/blood , Disease Progression , Female , Humans , Male , Middle Aged , Pandemics , SARS-CoV-2 , Young Adult
15.
Engineering (Beijing) ; 6(10): 1192-1198, 2020 Oct.
Статья в английский | MEDLINE | ID: covidwho-9104

Реферат

There is currently an outbreak of respiratory disease caused by a novel coronavirus. The virus has been named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the disease it causes has been named coronavirus disease 2019 (COVID-19). More than 16% of patients developed acute respiratory distress syndrome, and the fatality ratio was 1%-2%. No specific treatment has been reported. Herein, we examined the effects of favipiravir (FPV) versus lopinavir (LPV)/ritonavir (RTV) for the treatment of COVID-19. Patients with laboratory-confirmed COVID-19 who received oral FPV (Day 1: 1600 mg twice daily; Days 2-14: 600 mg twice daily) plus interferon (IFN)-α by aerosol inhalation (5 million international unit (IU) twice daily) were included in the FPV arm of this study, whereas patients who were treated with LPV/RTV (Days 1-14: 400 mg/100 mg twice daily) plus IFN-α by aerosol inhalation (5 million IU twice daily) were included in the control arm. Changes in chest computed tomography (CT), viral clearance, and drug safety were compared between the two groups. For the 35 patients enrolled in the FPV arm and the 45 patients in the control arm, all baseline characteristics were comparable between the two arms. A shorter viral clearance median time was found for the FPV arm versus the control arm (4 d (interquartile range (IQR): 2.5-9) versus 11 d (IQR: 8-13), P < 0.001). The FPV arm also showed significant improvement in chest CT compared with the control arm, with an improvement rate of 91.43% versus 62.22% (P = 0.004). After adjustment for potential confounders, the FPV arm also showed a significantly higher improvement rate in chest CT. Multivariable Cox regression showed that FPV was independently associated with faster viral clearance. In addition, fewer adverse events were found in the FPV arm than in the control arm. In this open-label before-after controlled study, FPV showed better therapeutic responses on COVID-19 in terms of disease progression and viral clearance. These preliminary clinical results provide useful information of treatments for SARS-CoV-2 infection.

Критерии поиска